

central Au+Au @ 7.7 GeV event in STAR TPC

Outline :

Main goal of BES: study QCD phase diagram Heavy Ion Collisions – the only experimental tool BES @ RHIC: Physics goals and observables:

- search for the CP and 1st order phase transition
- demonstrate the onset of deconfinement (QGP)

Run 10 – STAR experience Run 11

QCD phase diagram - Theory

M.Stephanov, hep-ph/0402115v1 (March 2006)

Theory at the "edges" is believed to be well understood:

- 1. Lattice QCD finds a smooth crossover at large T and $\mu_{\text{B}}{\sim}0$
- 2. Various models find a strong 1st order transition at large μ_{B}

So, there must be a critical point, but where?

Lattice at $\mu_B \neq 0$: serious problems, several methods on lattice, no agreement so far: \longrightarrow CP range: 160< μ_B <500 MeV

Given the significant theoretical difficulties, data may lead the study of QCD phase diagram

Beam Energy Scan Program at RHIC will cover this range

Beam Energy Scan at RHIC: $\sqrt{s_{NN}} \sim 5-50 \text{ GeV}$

experimental window to QCD phenomenology

at finite temperature and baryon number density

at RHIC : indications of sQGP but remain <u>unknown</u>:

- boundary between hadronic and partonic phases
- critical point

HOW to investigate it ? BES @ RHIC

 $160 \text{ MeV} < \mu_B < 500 \text{ MeV}$

also: SPS, FAIR (fixed target)

RHIC and BNL from space

RHIC = Relativistic Heavy Ion Collider Located at BNL= Brookhaven National Laboratory

Relativistic Heavy Ion Collider (RHIC) Brookhaven National Laboratory (BNL), Upton, NY

Relativistic Heavy Ion Collider (RHIC)

BES: Experimental Program

http://drupal.star.bnl.gov/STAR/starnotes/public/sn0493

Search for:

(1) indications of the existence of Critical Point & phase transition

• fluctuation measures

•higher moments of net proton distribution (kurtosis)

- azimuthally-sensitive femtoscopy
- elliptic & directed flow

(2) disappearance of signals of partonic degrees of freedom seen at 200 GeV

- disappearance of constituent-quark-number scaling of v_2
- disappearance of hadron suppression in central collisions
- disappearance of ridge
- local parity violation
- ...

•

Grazyna Odyniec

 \bigstar

Critical Point search – Fluctuations maximized at CP example: e-by-e fluctuations in K/π ratio

PRL 103, 092301 (2009)

more sensitive : - Higher Moments

<u>Thermodynamics:</u> Divergence of susceptibilities for conserved quantities (B,Q,S) at critical point.

Lattice QCD: Spikes for both χ_B and χ_S

Berdnikov, Rajagopal, PRD61, 105017 (00) Stephanov, Rajagopal, Shuryak, PRD 60, 114028 (99) Hatta, Stephanov, PRL. 91, 102003 (03) Gavai and Gupta, Phys. Rev. D 78,114503 (2008); Gupta, arXiv:0909.4630 [nucl-ex].

Observable:

Kurtosis of net-proton & net-C

- connect to lattice calculations!
- sensitive to long range fluctuations

Caveats: dynamical effects in collisions

- finite time and size
- critical slowing

High Moment Analysis (BES)

STAR: aXiv:1004.4959, sub. to PRL

High moments are more sensitive to critical point related fluctuation.

The 4th moment, Kurtosis, is directly related to the corresponding thermodynamic quantity: susceptibility for conserved quantum numbers such as Baryon number, charge, strangeness...

Centrality dependence of net-proton Kurtosis

STAR Preliminary:

First Kurtosis measurement for net-protons in high-energy nuclear collisions Monotonic behavior observed at relatively small μ_B region $\rightarrow \underline{baseline}$ *Grazyna Odyniec*

Disappearance of partonic degrees of freedom (I) (Onset of sQGP)

disappearance of n_q scaling, disappearance of hadron suppression at high pt, ... (a long list)

 n_{α} scaling observed at RHIC:

- (1) Mass separation at low p_T
- (2) Light and heavy quarks have similar magnitude of flow
- In intermediate p_T: separation between baryon and meson band

Disappearance of partonic degrees of freedom (II)

Scaling flow parameters by quark content n_q (baryons=3, mesons=2) resolves meson-baryon separation of final state hadrons

With lowering energy, disappearance of n_q scaling would suggest that we exit partonic dof world

Will we be able to see it ?

PRL <u>92,</u> 052302(04), <u>95,</u> 122301(05), nucl-ex/0405022, QM05

Local Parity Violations in Deconfined Medium

D.E. Kharzeev et al, NPA 803, 227 (2008) K. Fukushima et al, PRD 78, 074033 (2008)

ccccc

- (1) Under strong magnetic field, when the system is in the state of deconfinement and chiral symmetry restoration is reached, local fluctuation may lead to parity violation.
- (2) Experimentally one would observe the separation of the charges in highenergy nuclear collisions. Parity even observable: $\left< \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{RP}) \right>$ *Voloshin, PR <u>C62</u>, 044901(00),*
- (3) In RHIC Beam Energy Scan program test the model prediction
- the energy when the charge separation disappear => phase boundary

Collision Energies (GeV)	5	7.7	11.5	17.3	27	39
Observables	Millions of Events Needed					
v_2 (up to ~1.5 GeV/c)	0.3	0.2	0.1	0.1	0.1	0.1
V ₁	0.5	0.5	0.5	0.5	0.5	0.5
Azimuthally sensitive HBT	4	4	3.5	3.5	3	3
PID fluctuations (K/ π)	1	1	1	1	1	1
net-proton kurtosis	5	5	5	5	5	5
differential corr & fluct vs. centrality	4	5	5	5	5	5
n_q scaling $\pi/K/p/\Lambda$ (m_T - m_0)/ n <2GeV	8.5	6	5	5	4.5	4.5
ϕ/Ω up to $p_T/n_a = 2$ GeV/c		56	25	18	13	12
R_{CP} up to $p_T \sim 4.5$ GeV/c (at 17.3) 5.5 (at 27) & 6 GeV/c (at 39)				15	33	24
untriggered ridge correlations		27	13	8	6	6
parity violation		5	5	5	5	5

Recommendations of BNL Nuclear and Particle Physics Program Advisory Committee (PAC):

Run 10 (2010):

- 1. 10 weeks of Au+Au at 200 GeV
- 2. 12 weeks for a beam energy scan (BES) with Au+Au collisions:
 - 1. 4 weeks 62 GeV
 - 2. 8 weeks lower energies
 - 1. 0.5 week 39 and 27 GeV
 - 2. 1 week at 18 GeV (10 M)
 - 3. 2 weeks at 11 GeV (6 M)
 - 4. 4 weeks at 7.7 GeV (3.6 M)

Sufficient rates for the initial physics program at all energies

"binary" experiment: YES/NO (no "maybe's" & more statistics needed)

STAR experience with low energy running

STAR experiment demonstrated capabilities

only a few 10³ events taken during machine test

> 9.2 GeV results consistent with the published data

STAR : PRC 79 (2009) 034909, arXiv: 0903.4702 NA49 : PRC 66 (2002) 054902, PRC 77 (2008) 024903, PRC 73 (2006) 044910 E802(AGS) : PRC 58 (1998) 3523, PRC 60 (1999) 044904, PRC 62 (2000) 024901, PRC 68 (2003) 054903

Elliptic Flow

STAR and NA49 results are consistent STAR 9.2GeV v₂ fits with the observed trends NA49 : PRC 68 (2003) 034903 AGS : PLB 474 (2000) 27 STAR : PRC 77 (2008) 054901 : PRC 75 (2007) 054906, PRC 72 (2005) 014904 PHOBOS : PRC 72 (2005) 051901 : PRL 98 (2007) 242302 PHENIX : PRL 98 (2007) 162301

Pion Interferometry

Run 10 – part I of BES@RHIC

Hardware and operation improvements

Main directions of Beam Energy Scan program at RHIC established:

- search for turn-off of sQGP signatures
- search for the evidence of CP and/or 1st order phase transition
- + many other measurements

Strategy: scan available phase space with (6) equally spaced points between 5 and 39 GeV (we already have 62, 130, 200 data), and return to "interesting" regions for more detailed studies in the next year

Train left the station on April 8th with 39 GeV Au+Au collisions ...

Run 10 : 39, 7.7 and 11.5 GeV Au+Au

to be continued (run 11) next year

Central Au+Au @ 7.7 GeV Event

Typical Au+Beampipe @ 3.85 GeV event

Event outside active TPC volume

Au+Au @ 7.7 AGeV - vertex reconstruction – bck !

• Au+beam-pipe events from the beam halo

High Level Trigger (HLT): Vertex

HLT is able to reconstruct online the primary vertices HLT good event rate is very close to offline QA rate Priceless redundancy !

Online HLT good event rate

~9 Hz !

Statistics from Run 10

Beam Energy (√s _{NN} , GeV)	Minbias (Million)	Central (Million)	High-Tower Sampled Luminosity	FTPC+PMD (Million)
200	355	265	2.6 (nb ⁻¹)	5
62.4	140	33	175 (µb ⁻¹)	3.5
39	250		62 (µb ⁻¹)	23
7.7	5	N/A	N/A	N/A
11.5	≥ 7.5	N/A	N/A	N/A
5	Commissioning	N/A	N/A	N/A

Identified Particle Acceptance at STAR

Au+Au at 7.7 GeV

Au+Au at 39 GeV

Au+Au at 200 GeV

Multiplicity at 7.7, 39, and ... GeV

STAR Performance in Run 10 Particle Identification at 7.7 GeV

TPC PID

Particle Identification – part II

Invariant Mass (GeV)

Event Plane Resolutions

Event plan measurements at STAR:

(1) TPC $(|\eta| \le 1)$ (2) FTPC $(2.5 \le |\eta| \le 4.2)$ (3) BBC $(3.8 \le |\eta| \le 5.2)$

Summary

- RHIC Beam Energy Scan Fantastic success ! Au + Au at 39, 7.7 and 11.5 GeV runs:
 - Met all goals and far exceeded for some data points
 - 7.7 GeV (34 days) and 11.5 GeV (8+3 days) : N_{events} > 5 M
 - 39 GeV (15 days): N_{events} ~ 170 M events
 - Dramatic improvement of the collider performance at 7.7 GeV
- Preliminary results based on fast offline run 10 data look very promising
- Final calibration results soon
- Last call for predictions on critical point !!!
- PAC in two weeks ... discussion of run 11 begins !

STAR BES for Runs 11 and 12

Run	Beam Energy	Time	System	Goal	New Detector
11	$\sqrt{s_{NN}} = 18, 27 \text{ GeV}$	2 weeks	Au + Au	100, 150M minbias	HLT
	$\sqrt{s_{NN}} = 200 \text{ GeV}$	4 weeks	U+U	200M minbias 200M central	
	$\sqrt{s} = 500 \text{ GeV}$	5 weeks 6 weeks	$\begin{array}{c} p_{\uparrow} p_{\uparrow} \\ p_{\rightarrow} p_{\rightarrow} \end{array}$	trans. $P^{2*}L=4 \text{ pb}^{-1}$ long. $P^{2*}L=20 \text{ pb}^{-1}$	
		1 week	$p_{\uparrow}p_{\uparrow}$	pp2pp at high β*	
12	$\sqrt{s} = 500 \text{ GeV}$		$p_{\rightarrow} p_{\rightarrow}$	long. P ² *L= 50 pb ⁻¹ P ⁴ *L= 15 pb ⁻¹	FGT
	or	10 weeks	or	or	
	$\sqrt{s} = 200 \text{ GeV}$		$\begin{array}{c} p_{\uparrow} p_{\uparrow} \\ p_{\rightarrow} p_{\rightarrow} \end{array}$	trans. P ² *L= 8.5 pb ⁻¹ long. P ⁴ *L= 4.3 pb ⁻¹	
	$\sqrt{s_{NN}} = 200 \text{ GeV}$	10 weeks	U + U or Au+Au	3.5 nb⁻¹ U+U or 5 nb⁻¹ Au+Au	MTD

